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I. Note on Professor SYLVESTER'S representation of the Motion of a free rigid Body by
that of @ material Ellipsoid whose centre is fizxed, and which rolls on a rough Plane.
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Ix a paper published in the Transactions of the Royal Society for 1866, Professor Syr-
VESTER has given an important extension of PoINsor’s representation of the motion of a
freely rotating rigid body, by means of the momental ellipsoid. e has proved that if a
material ellipsoid, similar in form to the momental ellipsoid, and so constituted that its
principal moments of inertia, A, B, C, are connected with its semiaxes @, b, ¢ by the rela-
tion Aa* (6°—¢*)+Bb*(¢*—a*)+ Cc*(a*—b%)=0, be made to roll in contact with a perfectly
rough plane, the motion of this material ellipsoid will be precisely the same as that of
the momental ellipsoid of the rigid body; the rough plane taking the place of the geo-
metrical fixed plane, in contact with which the momental ellipsoid is supposed to roll.
He has also investigated expressions for the pressure and friction between the ellipsoid
and the rough plane, in terms of the angular velocity of the ellipsoid, and of the length
of its axes, and the distance of the centre from the rough plane. In investigating inde-
pendently the values of these forces, I have been led to a somewhat different treatment
of the same problem, in the course of which some theorems have presented themselves
which may be not without interest.

The notation which I adopt is as follows: w,, ,, w, represent the component angular
velocities of the ellipsoid about its principal axes, which, as proved by Professor SyL-
VESTER, are connected by the following equations:—

dw 1 1 dw 1 1 do 1 1
ﬁ:a“(F-—c—@)wzwa,7;:6?(;—2@)&)3&)1, ﬁ:ci'(a—g—l-)g)w,wz. ..o (D

The distance from the centre of the ellipsoid to the rough plane is denoted by p, and

the component angular velocity of the ellipsoid about the normal to the rough plane,

which is known to be constant, by . = The component angular velocity about the pro-
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2 THE REV. N. M. FERRERS ON PROFESSOR SYLVESTER’S

jection of the instantaneous axis on the rough plane is denoted by w, and the whole
angular velocity by w, so that we have

oo to=n"+p=s" . . . . . . . .. .. (2)
‘We have also the following relations :—

2 2 2 2
wy W, @ A
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b‘éc_gp
w‘)\“’
Wi £ ()

And the principal moments of inertia are represented by

|
G (-, (2o
which will be found, when substituted for A, B, C, to satisfy the relation already stated.
In the case of a uniform ellipsoid, we have

1 1 1\ H
G<g+7¢+p)=$@

# [The equations (1), (2), (3), (4), and the invariability of A, may also be proved as follows. If x, y, z be
the coordinates of the point of contact, referred to the principal axes, we have

ar Yy 2 @y P 1

Ez+%3+ 2_1’ 4+%71+ vy F.
Also

Y=Y=2=-D

w, w, w, A’
whence .

wi 3__}\2 w1 wz )\"
Multiply these equations by — E G, and add, then

2b2 2 {(Q_E)b2 2 §+ Eé'_ ‘_2 (;2a2(l)§ g—g 262 2} __(G___H)_x_;’
¢ p P
or
A p*  wis viva of the ellipsoid-
T at G-—-H ’

and is therefore constant. »
Hence the direction-cosines of the perpendieular to the fixed plane are

110‘”

hat: )
2

, P
¢ A

and since this line is fixed,
or

Similarly
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[We shall first investigate the value of %,, the component angular momentum of the
ellipsoid about the normal to the rough plane. The cosines of the inclinations of this

PPy pPPoy p? g :
line to the principal axes of the ellipsoid are =- 3, 5~ 72, 5 7¢ respectively; and the
component angular momenta about the pnnmpal axes are
G H G H G Hy ,
(Eé—p )62 2&11, <bg P )0 aw,, (?-ﬁ)a‘bzws

respectively. = Hence

G H b%2 G H\c%? G  H\a?
k —‘“{(Zx‘é—]ﬂ) ag W1+ <b2 )Cb‘: wz+ (ce p2> 2 Ws}

1. I 1 1,11
Now, by multiplying (2), (3), (4) by agbgcz, — (W—[-CQ?-I—W), (Eé-l-b—g-{—?) respec-
tively, and adding, we see that ‘

e(1_1)(1l_1
+ + (17" ag) (p? b*) (p >+a*b“’6“’

=(G—-H)xabc+G)\p (1_—)(1_;§)<1—;§)+G?;¢. )

We shall next investigate a relation between the component angular momentum of
the elhps01d about any axis through its centre, and that, about the same axis, of a
particle of mass G, situated at the point of contact of the ellipsoid and rough plane,
and moving as that point moves. If /, m, n be the direction-cosines of the axis referred
to the principal axes, the component angular momentum of the body about it is

(G—-E) 0*c*lw, + ( H) ca’me, -+ (g——;—i) 20" nw,,
agbzcﬁ{(}(lwl mvug_i_mvs) H <lw,+mw2+nw3)}. AN )

Again, the coordinates of the point of contact are IX) @y 1)% Wy ]-:: w, respectively. Hence

Hence

or

its component velocities, parallel to the axes, are

pdwl pdey p dog,

At A dt A dt’

and its component angular momenta are therefore

R 2 dw dw dw
G)ﬁ(“’z A T;)’ G%("’s @ dt) G;ﬁ(“’l T dtl)
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Now, by equations (1), we see that
d d 1 1 1 1
Wy ;,;3 —uw, ZQ c (ﬁ—ﬁ>wlw§-—bﬂ(@—-a—g)wlw§
1 (w?  w? w? | w?
=veui(HE) - (+2)]
— 1, (S —L )2 by (3) and (4)
- 1 a"l p? p? y *

The other component angular momenta being similarly transformed, we obtain, for
the component angular momentum about the assigned axis,

T
Gare (G e g T )| N )

Comparing this with the expression already obtained for the angular momentum of the
body, we see that the two expressions are equal if

or

lwl _l_mw‘2 +n:;3_
i. e. if the axis be parallel to the rough plane; and generally that the angular momentum
of the ellipsoid, that of the particle,

—(G— H)a 20% <lw]+mw2+n_a_:§>

which, if the axis be perpendicular to the rough plane, becomes (G—H) z b a A, 2 con-

stant.—Tebruary 1870].

Now, let %, denote the angular momentum of the ellipsoid about an axis through its
centre, parallel to the rough plane, and at right angles to the instantaneous axis, and %,
about an axis through its centre parallel to the rough plane and at right angles to this
last. The radius vector of the point of contact measured from the foot of the perpen-

dicular on the rough plane isi—) w; and hence if % denote the angular velocity of this

radius vector in space, the radial and transversal component velocities of the point of

contact will be X% » M respectively. To obtain the component angular momenta

of the particle we have only to multiply the expressions by G. Hence, by the theorem

just proved,
P du r
h=G% o7, by =G (8)
‘We can now calculate the values of P and F, the pressure and friction of the ellipsoid
against the plane. Taking moments about axes through the centre of the ellipsoid,
lying in the rough plane and perpendicular to the direction of P and F respectively,
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each of these forces acts at an armj;i w. Hence

dhy

P
FS =y

2 dp
=% 1 %oy (7);
F=2Gp%. .

0
It is worthy of notice that F= ‘7:-“ h,.

. dh
Again, Pp dtt —nbh,
—GE(E )
=G5 (=)

1 d?
P= Gp( dtg n2>

o

()

(10)

It may be desirable to replace these expressions by others in which w shall be the

only variable quantity, and which shall be free from differential coefficients.

may be done as follows. Writing, for shortness, «, 3, v in place of
2 b2 2
1—%,1_ﬁ,1_%

respectively, it may be proved, from equations (1), (2), (3), (4), that

(%) ==+ By (- )

'Chis

(11)

Again, it is proved by Poinsor, ¢Sur la Rotation des Corps,” p. 130 (see also Quarterly

Journal of Pure and Applied Mathematics, vol. vii. p. 74), that

3
17=7»+043')/£§, .

(12)

a result which also follows from (5), (6), (7), remembering that the angular momentum

of the particle about the normal to the rough plane is Gp e .
Now, differentiating (11),

(1 20) = = ) — (- )+ )

— (&P -Ba?) (W +yed’) ;

S %j’a" = — (- yen®) (1 4 af3n) — (2 2fB2°) (w* 4 Ba®) — (w° +Po2’) (* + yer®)

+ (12 4 ByA?) (12 + yan?) (u + aBA?)
w ’
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and
. A\ 2
W =<7\‘u,+oa,8'y;‘—> ;
1d%
2 (,;W—-%) —2p' —(1+By+yo+ o) p’ —2efyr' —o’ 6272
At A
P:Gp{——?(/ﬁ—(l-l—ﬁg/—[—'yoc—{-aﬁ)?\?'—Qaﬁ'y‘?—a?{flgyzp}. e (13)
Again,
F= Gp dr’
G
=7p{—(W-l-ﬁﬂg)(ﬁo“’%-wﬁ)((b%wﬁﬁ)}- Coe e e (1Y)

[The theorem contained in equations (5) and (6) may perhaps receive additional illus-
tration by a comparison of the moments, about the principal axes, of the forces acting
on the ellipsoid, and of those acting on the particle coinciding with the point of contact.
Since the component angular momenta of the ellipsoid about the principal axes are

G H G - H G H . :
(aQ - )bo o, (bg 0 >caw,, (E‘i’ > *b’w,, it follows that the moment of the forces

about one of the principal axes is

G H G H
(Sr )bz 2 dwl {(z@ —"p'_Q) 02@2'— (cé p ) 252}&-’20)37
1262 d 22 212
G{—aﬁ— doy_ (”b—‘;_“ )%} {620 1 (¢a —cﬁb?)wzws}
b%c? dow 202 a??
G{-a? Efl"‘ (6;;7 )sz%} by (1)

(6% —e?)(Pa® + 0% — bgcg).
222 Wos,

or

I

or

G

a result independent of H. Now, if we refer to equation (7) we shall see that the
angular momenta of the particle only differ from those of the ellipsoid by having G
written in place of H; consequently the moments of the forces, since they do not involve
H, must be the same for the particle and the ellipsoid. It follows of course that the
moments of the forces about any other axis must be the same in both cases.

In the above investigaﬁon of the value of P, T have followed Professor SYLVESTER, in
assuming that the friction acts wholly in a direction perpendicular to the instantaneous
axis, The other component of the friction is necessarily indeterminate, since any force
in the direction of the instantaneous axis may be combined with it, without altering its
effect. I have assumed this component of the friction to be zero; if it be taken to be

equal to an arbitrary force I, the value of P above investigated must be increased by
'

T2 The values of the moments of the forces are not, of course, affected by this suppo-
22

sition; and if I’ be so chosen that the pressure between the ellipsoid and the rough
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plane may be zero, the forces acting on the body will become absolutely identical with
those acting on the particle G,—that is, we shall have F' =G§(‘%’—n"’w>, and F, as
before, =2Gp %.—-—February 1870.]

It may be worth while to point out that the correlated and contrarelated bodies
treated of in the latter part of Professor SYLVESTER’S paper include, as a particular case,
Poixsor’s “rolling and sliding cone;” for the equation of that cone is

aﬁ_p2+b2 ?2+ 2—0

which is asymptotic to the two followmg surfaces :—

22

2+bl 2+ ‘2—'1

ac.,+ ,,Q+ =1,

the former of which is confocal, the latter contrafocal, to the momental elli_soid of the
free body. Ience, since the difference between the squares on corresponding semiaxes
is in this case p®, each of these hyperboloids will roll on the invariable plane through
the fixed point, which will be asymptotic to it, while the plane itself rotates with uniform
angular velocity . Hence the asymptotic cone will move in exactly the same manner.



